ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317773925

Dynamic structure measurement for distributed software

Article in Software Quality Journal - September 2018

DOI: 10.1007/511219-017-9369-3

CITATIONS
9

6 authors, including:

Wauxia Jin
Xi'an Jiaotong University

20 PUBLICATIONS 212 CITATIONS

SEE PROFILE

/| Yu Qu
‘& University of California, Riverside

27 PUBLICATIONS 307 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roject Securing Outsourced Data in Cloud with SGX View project

roect quality of distributed system View project

All content following this page was uploaded by Yu Qu on 08 September 2017.

The user has requested enhancement of the downloaded file.

READS
234

Ting Liu
Xi'an Jiaotong University

132 PUBLICATIONS 2,384 CITATIONS

SEE PROFILE

Qinghua Zheng
Xi'an Jiaotong University

500 PUBLICATIONS 6,525 CITATIONS

SEE PROFILE

https://www.researchgate.net/publication/317773925_Dynamic_structure_measurement_for_distributed_software?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/317773925_Dynamic_structure_measurement_for_distributed_software?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Securing-Outsourced-Data-in-Cloud-with-SGX?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/quality-of-distributed-system?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wuxia-Jin?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-California-Riverside?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-123fcd81a3925a7eaf61e012f12a0a93-XXX&enrichSource=Y292ZXJQYWdlOzMxNzc3MzkyNTtBUzo1MzYzMjA0OTg3ODIyMDhAMTUwNDg4MDE3OTg5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software Qual J
DOI 10.1007/511219-017-9369-3 @ CrossMark

Dynamic structure measurement for distributed software

Wauxia Jin! - Ting Liu! - Yu Qu' - Qinghua Zheng! .
Di Cui! - Jianlei Chi!

© Springer Science+Business Media New York 2017

Abstract With the advent of network technologies and the ultra-fast increasing of com-
puting ability, the distributed architecture has become a necessity for the majority of
software systems. However, it is difficult for current architecture measurements to evalu-
ate distributed systems, such as cohesion and coupling. Most current methods focus on the
relations among various classes or packages but barely consider the structure at compo-
nent level, which has a serious impact on change impact analysis, fault diagnosis, or other
maintenance activities. In this paper, we propose a dynamic structure measurement for dis-
tributed software. The intra-component and inter-component dependencies are introduced
into a Calling Network model to further represent distributed software. More importantly,
based on the Kieker monitoring framework, the measurement methods are proposed and
implemented for distributed software. Two structural quality attributes cohesion factor of
component (CHC) and coupling factor of component (CPC) are measured. Finally, case
studies are conducted on two open-source distributed systems: RSS Reader Recipes and the

P4 Wauxia Jin
wX_jin@stu.xjtu.edu.cn

Ting Liu
tingliu@mail.xjtu.edu.cn

Yu Qu
quyuxjtu@mail.xjtu.edu.cn

Qinghua Zheng
ghzheng @mail.xjtu.edu.cn

Di Cui
cuidi @sei.xjtu.edu.cn

Jianlei Chi
chijianlei7 @sei.xjtu.edu.cn

Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong
University, Xi’an, China

Published online: 05 June 2017 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9369-3&domain=pdf
mailto:wx_jin@stu.xjtu.edu.cn
mailto:tingliu@mail.xjtu.edu.cn
mailto:quyuxjtu@mail.xjtu.edu.cn
mailto:qhzheng@mail.xjtu.edu.cn
mailto:cuidi@sei.xjtu.edu.cn
mailto:chijianlei7@sei.xjtu.edu.cn

Software Qual J

distributed version of iBATIS JPetStore. By applying the proposed methods and compar-
ing with the existing ones, the features of CHC and CPC can be assessed and observed for
distributed software.

Keywords Dynamic metric - Calling network - Distributed software - Structure
measurement

1 Introduction

In recent years, various new application scenarios are almost impossible to run on a sin-
gle machine, such as gene analysis, social network, big data applications, etc., due to the
increasing difficulty of exploiting higher CPU speed or larger memory of a single machine.
Moreover, the size of industrial software has been growing for decades, and the mainte-
nance is often hindered by technical debt (Lin et al. 2016). So it has become too difficult
to make changes for industrial software with business requirements. As a consequence, the
idea that splitting a big single-server application into smaller cooperating components to
form a distributed system is emerging (Thones 2015). Such distributed system can make use
of hardware power of more than one computers, also can help software be easier to change,
scale, evolve, and maintain. In general, distributed software has been a popular trend as
one kind of software paradigms. Because of distributed nature, the structure of distributed
software is more complex when compared with single-server software. Such structural com-
plexity makes a serious impact on the development or maintenance activities such as change
impact analysis (Cai and Thain 2016), fault diagnosis (Nguyen et al. 2013), etc. Therefore,
it is crucial to measure structure quality of distributed software. Structure quality measure-
ment aims at software quality assurance, and software with high quality is likely to be stable
and maintainable (Dallal and Briand 2012).

Distributed system is a collection of independent computers that appears to its users
as a single coherent system (Tanenbaum and Steen 2002). A distributed system consists
of components (i.e., computers) that are autonomous. A component can be a process or
any piece of hardware required to run a process.! In this paper, regardless of the hardware
level, we only focus on Distributed Software itself. We define a Component of distributed
software as one software modular unit corresponding to one autonomous process. Com-
ponent is an independent and more abstract modular unit than class or package. These
components collaborate with others dynamically to achieve a common goal. Node is an
autonomous computing unit, which can be the physical computer, virtual machine (VM),
container, etc. Different components are deployed on different nodes respectively, or more
than one components are deployed on the same node. Components interact with remote ones
by employing communication techniques including remote method invocation (RMI), and
other third party communication framework (Coulouris et al. 2012). It is clear that there are
complicated inter-component behaviors in a distributed system which cannot be captured
by static analysis.

It is widely accepted that the structure quality of software can be estimated by mea-
suring cohesion and coupling attributes. The Cohesion of a module indicates the extent to
which the components (here the components refer to elements) of the module are related
(Bieman and Ott 1994). Coupling is defined as the measure of the strength of association

Uhttp://www.hpcs.cs.tsukuba.ac. jp/~tatebe/lecture/h23/dsys/dsd- tutorial html#Basics

@ Springer

http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html#Basics

Software Qual J

established by a connection from one module to another (Stevens et al. 1974). Well-designed
or well-implemented software systems always follow the principle “high cohesion and low
coupling.” To measure cohesion and coupling attributes in a quantitative way, a variety
of corresponding metrics have been designed, such as works of Chidamber and Kemerer
(1994), Yacoub et al. (1999), Ying et al. (2004), Counsell et al. (2006), Qu et al. (2015a),
etc. However, cohesion and coupling concepts are proposed in the period when distributed
software did not exist. It is not surprising that these quality attributes mostly are measured
for single-server software, without being assessed for distributed software.

But far beyond that, distributed software has its own unique feature for measuring these
attributes. Figure 1 illustrates an example on single-server and distributed versions of a soft-
ware system. C; denotes a component. m; denotes a method. A directed edge from m; to
m j means a method call. Methods belonging to different components are rendered in dif-
ferent color separately. Also, method call within components and across components are
rendered in different color. As shown in Fig. 1, besides intra-component dependencies sim-
ilar to ones in single-server software, there are inter-component dependencies in distributed
software. Both intra-component and inter-component dependencies constitute the structure
relations in distributed software. Through the collaborating function of these dependencies,
normal or abnormal behaviors in one component often propagate to others. If components
are designed or partitioned with proper dependencies shown in Fig. 1b, the ripple effect can
be controlled within the root-cause component to a certain extent, reducing the influenced
scope. On the contrary, components in Fig. 1c with improper dependencies could be very
difficult for understanding and maintenance. So it is critical to estimate structure quality at
component level by considering both intra and inter component dependencies for distributed
software. Such measurement can estimate the structure quality of a new distributed soft-
ware, and also can guide the partitioning in the transformation from legacy single-server to
distributed version. However, the existing related works mostly estimate software system at
class or package level but not component level. Furthermore, no works take account into the
inter-component dependencies which cannot be captured by static analysis of source code.

In this paper, we address the issue of structure measurement for distributed software. For
distributed system, the structural dependency relationships are introduced from two aspects.
One is natural relationship introduced by inter-component communication type and the
other is the relationship introduced by designers or developers (Indrajit Wijegunaratnec and
Fernandez 1998). Since the dependencies introduced by the former can be finally exposed
on software itself, here we focus on the dependencies introduced by the latter. Specific for
distributed software, we define structure attributes cohesion factor of component (CHC)
and coupling factor of component (CPC) which are consistent with traditional cohesion and
coupling concepts.

CHC is the extent to which the elements (methods, classes, etc.) of a component are
related in a distributed software system.

Fig. 1 a Single-server version. b One distributed version. ¢ Another distributed version

@ Springer

Software Qual J

CPC is the measure of the strength of association established by a connection from one
component to another component in a distributed software system.

In order to measure CHC and CPC attributes in a quantitative way, we design the corre-
sponding metrics by considering the distinguishing characteristics of distributed software.
Our work makes the following main contributions:

1. The structure quality measurement is proposed for distributed software, which has its
own structure characteristics when compared with single-server software.

2. Based on Kieker monitoring framework (Hoorn et al. 2012), the dynamic structure
measurement approaches are proposed and implemented for distributed software.
Based on the extended calling network, Growing CN and Partitioned CN models
(Jin et al. 2016), CHC and CPC attributes are measured. Information used by the
metrics is exposed in method-method interaction, one view of software attributes
(Allen et al. 2001; Dallal and Briand 2012). More importantly, we emphasize inter-
component dependencies, and take into account both direct and indirect dependency
relationships.

3. Case studies are conducted on real-world distributed software systems: RSS Reader
Recipes and the distributed version of iBATIS JPetStore. By employing the pro-
posed methods and comparing with the existing measurements, studies show that our
approaches are able to estimate the structure quality of distributed software. The results
are consistent with the expected features.

The rest of this paper is organized as follows. The extended calling network model is
introduced in Section 2. Section 3 presents the proposed metrics and validates their math-
ematical properties. Section 4 demonstrates the case studies. Section 5 makes discussion.
Section 6 introduces some related works. Make conclusion and discuss future work in
Section 7.

2 Extended calling network

Qu et al. (2015b) proposed calling network (CN) model for software system. A lot of works
have used this model (Wang et al. 2017; Tian et al. 2017). We extend the model considering
distributed software. The extended CN model is given in the following:

Definition 1 Calling behaviors cb. cb is a behavior record of one method call. cby =
(tx, Callery, Calleey, Paramy, VMcaiier,, V Mcaliee,). Where #; is the timestamp of the
method call. Callery and Calleey are self-descriptive. Paramy is the parameter list
of Calleer. VMcaier, 1s the name of component to which the method belongs. So as
VMCalleek~

Definition 2 Calling behavior set CB. CB = {cby | k € N}. CB is an ordered set.
According to the execution timestamp of all method calls, k is the sequence number of cb.

Definition 3 Calling graph CG. CG = (V, E). CG is a directed graph, in which V stands
for the method set and E stands for the set of method call relations. Let LY be the set of
vertex labels, and L be the set of edge labels. LY % 0, LE # (. Let AP be the set of
discrete attribute values and AN C R be the set of numeric attribute values, such that A =
AN U AP The label-to-value mapping function for vertex is denoted as f, : V x LV — A.

@ Springer

Software Qual J

The label-to-value mapping function for edge is denoted as f, : E x L — A. The vertex
label and edge label can have various meanings in different scenarios. In this paper, vertex
label is the name of component to which the method belongs. Edge label is weight, the
method call frequency. Thatis, f, : V x LY — AP, f,: E x LE — AV,

Definition 4 Calling graph generation function: fcG_gen : CB — CG.

Definition 5 Calling network (CN). CN is an ordered set of CG: CN = {CG; | i € N},
Where CG; = fcG.Gen(CBi), CB; € CB. CB can be partitioned into C B; using some
strategies. In this paper, we discuss two strategies. Other strategies also fit extended CN
model.

Strategy 1 Use fixed interval and quantity of cbs to generate CG. Two parameters are
needed in this strategy: Ny, and Ncg. Ny represents the interval between two consecutive
CBs, and N¢¢ represents the number of ¢bs in each CB;. Then, CB; = {cby | (i—1)-Nysp <
k<(@—1)-Niy+ Ncgl.

Strategy 2 Use time interval to partition CB. Two parameters are set: 7; and At. T; is the
i-th time point, At is the time window for selecting c¢bs. Then, CB; = {cby | T; — At <
t = T}

In general, the extended CN model is formalized as (Strategy 1 is included):

CN ={CG; | i e N}

CG; = fcGg,(CB;),CB; CCB

CB; ={cb; | (i —1) Nyy <k =<(@{—1): Niyy+ Ncg)
CG=(V,E), fo:VxLY - AP f, 1 Ex LE — AN
CB = {cby | k € N}

cby = (tx, Callery, Calleey, Paramy, L Veatten, LVC"”“k)

Then two CN generation schemes are proposed by setting different parameters of
extended CN model above:

Scheme 1 Growing calling network (Growing CN). Here, use Strategy 1 to partition
CB. Assuming Ny, = 0 and Ncg = i - Nconst, where Ncops: is a constant value. Then
CB; = {cbr | 0 < k <i- Nconst}- Obviously, this sequence of CGs represents the growing
process of calling graph over time.

Scheme 2 Partitioned calling network (Partitioned CN). Here, use Strategy 2 to parti-
tion CB. T; is the end time of one business functionality, and At is the processing time
window. For ith business functionality, 7; — At is the starting time, and 7; is the end time
of processing. CB; = {cby | T; — At < tx < T;}.

Growing CN is a sequence of dynamic CGs, and represents the growing process of call-
ing graph over time. Partitioned CN is a dynamic CG in a time interval. Through Growing
CN and Partitioned CN, the software dynamic behavior evolving over time can be presented
and observed intuitively.

@ Springer

Software Qual J

3 Distributed software structure measurement

Different consideration reflects different view of measurement, so the underlying hypothe-
ses which drive structure measurement need be specified (Briand et al. 1999). We design
metrics for CHC and CPC attributes, and the hypotheses also also will be described.

3.1 Cohesion factor of component

Based on the extended CN model, we design metric CC; for measuring CHC attribute of
component C; according to the following hypotheses.

Hypothesis H1 Intra-component dependencies contribute to CHC. More dependencies
within one component, more CHC the component will be.

Hypothesis H2 Inter-component dependencies make one aspect of contribution in reducing
CHC of the involved component.

Since CHC measures the cohesion inside a component, the inter-component dependency
direction is insignificant. Hence, we measure CHC based on undirected extended CN model.

CG = (V.E), f,:VxLY > AP f, Ex LE - AV
P = {ex | ex = (vk—1, vi), fu(L"") = fu (L) = Ci}
Qi = {ex | ex = (ve—1, vi), (fu(L"") = Ciand f,(L™) # C;)
or (fy(L"") # Ciand f,(L%) = C;)}

P; is a set of edges which are within component C;. Q; is a set of inter-component edges
which are across component C;. CC; of component C; is formulated as:
ce = B g —ta= 05201702 100
1

In a complex distributed software, component is an independent unit, so intra-component
interaction is larger than inter-component interaction. That is, for component C;, |P;| >
|Qil. N; denotes the edge set of all possible method interactions within component C;. The
contribution of intra-component dependency to CHC is not equal to that of inter-component
dependency, so two weight factors are defined. « is the weight of intra-component depen-
dency, while 8 is the weight of inter-component one. As | P;| > |Q;|, CC; value always is
smaller than that of not differentiating the weight. By emphasizing the weight factors, CC;
metric is able to consistent with the characteristics of distributed software.

A set of properties are proposed for defining cohesion by Briand et al. (1998). They are
widely supported by many related works, such as Allen et al. (2001), Briand et al. (1998),
Zhou et al. (2004), and Al Dallal (2010). Consistent with those properties, we reserve CHC
and the properties are shown in Table 1.

Then, we validate that the proposed CC; has the properties in Table 1.

Property 1 Nonnegativity and normalization. When there is no interaction (|P;| =
0,]0i| = 0), CC; = 0. When all possible method interactions happen within a component,
and there is no inter-component interaction, CC; reaches the MAX. This is obvious and
accords with our intuition.

@ Springer

Software Qual J

Table 1 The properties of CHC

Concept/Properties

CHC for distributed software:

1. Nonnegativity and normalization. CHC belongs to a specified interval [0, MAX]

2. Null value. CHC is null if the set of intra-component edges of a component is empty

3. Monotonicity. Adding an intra-component edge to a component does not decrease its CHC

4. Merging of components. If two unrelated component C; and C, are merged to form a new component
C3 = C1 U, that replaces C and C», then CHC of C3 is not greater than the maximum CHC of C; and C»

Property 2 Null value. If the set of intra-component interaction of component C; is empty
(] P;| = 0), and inter-component interaction of component C; is empty (|Q;| = 0), then CC;
is null.

Property 3 Monotonicity. Add an intra-component edge to component C; as a new
component C.

a-|Pl=B-1Q]l o-|P|—B-10il

cCl—cCC; =

WA [Nl
_ o (Rl+D =B 10l o-|Pl-B-10il
INi| +1 | N; |
_ o (Nl = 1PD + B - 10l >0
(INi| + 1) - |N;|

Therefore, it can be concluded CC satisfies Property 3.

Property 4 Merging of components. Let two unconnected component Cy and C, be merged
to form a new one C3 = C; U C5.
Hypothesis max{CC, CCy} = CCy, then CC| > CC;.

a-[Pil=B-101l a8 10
[N - [N2
= (@ [Pl —B-101D) - [N2| = (@ - |P2| — B -|Q2l]) - IN1]
CC3 —max{CC{,CCr} = CC3 — CC(Cy
a- (P4 1PD)—p-(Q1+1Q2D) a-|Pi|—B-|0Q1l
IN1| + | N2 [N
(- |Po| = B-1Q2D) - INi] = (@-|Pi| = B-1Q1D) - [N2] _
(IN1| + [N2|) - [N1 -

CCi=>CCr >

0
It can be concluded CC3 < max{CC, CC3}. So, CC satisfies Property 4.
3.2 CouPling factor of component

We design a metric C P; for measuring CPC attribute for component C; according to the
following hypotheses.

Hypothesis H3 Both direct inter-component dependency and indirect inter-component
dependency contribute to CPC.

@ Springer

Software Qual J

Hypothesis H4 Indirect inter-component dependency is indicated in calling path across
components. And the calling path is deeper, the indirect dependency is weaker. When the
depth is equal to 1, it becomes direct dependency.

Hypothesis HS In the definitions of direct and indirect dependency, direct dependency is
stronger than indirect one.

CPC measures the coupling between two components, and dependency strength of com-
ponent i be coupled to component j is not symmetrical with that of the opposite coupled
direction. So we make distinction between inbound CPC and outbound CPC. That is, we
measure CPC attribute based on directed extended CN model. Metric CP; ; and C P; are
formulated as the following:

CG = (V,E), f:VxLY - AP, f,: ExLE - AV
Pi = fex | ex = (vk, vkt1)s fo(L™) = fu(LY*) = Ci}
Qi; = {ex | ek = (vk, vig1), fu(L™) = Ci, foL¥) =Cj)
0i = fex | ex = (vk, vi41), fu(L™) = Ciy fu(L™H) # Ci}
Pathi; = ek, ex+1, ..., e—1} = {(vk, Vi+1)s k1, V42, - - -, (=1, v}
Methy; = fn(Pathy,)
PATH; j = {Pathy; | ex,exs1,...,e—2 € P;, eg_1 € Q; j}
PATH; = {Pathy | e, ek+1,...,e1—2 € P;, ej—1 € Qi}

|PAT H; | |PAT H; |
CPij= Y Methwy= Y. fu(Pathy)), Pathij € PATH,,
n=1 n=1
CP =) CP
i#]

P; is a set of intra-component directed edges within component C;. Q; ; is a set of inter-
component directed edges starting from C; to C;. Pathy ; is an order set of edges, and it
means a directed path from vito v;. Methy; is a mapping result of Pathy ;, and it means
the dependency strength from vito v;. fi, is the mapping function. PAT H; ; is a set of
Pathy,, whose last edge is inter-component across C; and other edges are intra-component
within C;. CP; ; measures CPC from C; to C; and it is the sum of dependency strength
indicated in f;, (Pathy,). CP; is the total CPC of C;.

Here, we choose the mapping function f,(n) = n% n € N, because it owns two
important mathematical properties:

Rigorous decrease of an Rigorous decrease implies that the dependency strength from
v to vy is weaker when the path length from vy to v; is larger. When the length is equal to 1
(n = 1), the dependency reaches the max (ni2 = 1). This is consistent with hypothesis H4.

The convergence of series) n—12 The convergence implies and makes sure that the

- . . . 2
sum of indirect dependency strength is less than direct one. lim), _, n]—z = %, %0
n—o0
: 1 _ 2 _
nh;lgoinzznj_? 1 <1

A set of properties are proposed for defining coupling by Briand et al. (1999). Many
coupling works support the properties, such as Allen et al. (2001), Briand et al. (1999), and

@ Springer

Software Qual J

Arisholm et al. (2002). Consistent with these properties, we reserve CPC for distributed
software, and the properties of CPC are listed in Table 2.
Then we validate that the proposed C P; has the properties in Table 2.

Property 1 Nonnegativity. |PAT H; j| > 0, so C P; is nonnegativity. This also reflects our
intuitive judgment.

Property 2 Null value. If the set of inter-component edges is empty, Q; ; = ¥. PATH; ; =
@, hence CP; j is null, and C P; is null.

Property 3 Monotonicity. Add an inter-component edge to a component C; as a new C;.
|0} ;| > 1QijLhence |PATH/ ;| > |[PATHj j|. So CP/ ; > CP; j, then CP{ > CP,.

Property 4 Merging of components. Merge two component C; and Cp to form a new
one C3 = C; U C,. Because the original inter-component edges from C; to C> no
longer belong to inter-component ones in Cz, |Q3| < |Q1| + |Q2|, then |PATH3| <
|PATH{|+ |PATH;|.SoCP; < CP; + CP;.

Property S5 Disjoint component additivity. Merge two unconnected components C; and C»
to form a new one C3 = C; U C2 . Because there is no inter-component edge from original
C; to original C, |Q3| = |Q1] + |Q2|, then |PATH3| = |PATH;| + |PAT H;|. So
CP;=CP +CP,.

4 Case studies

4.1 Setting

We conduct experiments on two open-source distributed software systems. By using our
measurement approaches, the following processes are done for each software system:

Construction of inputs In order to collect execution behaviors, we need design the repre-
sentative inputs for driving the target software system. Two alternative methods are widely
used: designing test cases and designing test scenarios (Arisholm et al. 2002). In our cases,
the software system is web-based and exposes the functionality features to users through

Table 2 The properties of CPC

Concept/Properties

CPC for distributed software:

1. Nonnegativity. The CPC between two components is nonnegativity

2. Null value. CPC is null if the set of inter-component edges of a component is empty

3. Monotonicity. Adding an inter-component edge to a component does not decrease its CPC

4. Merging of components. If two component C; and C, are merged to form a new component C3 = C; UC,
that replaces Cy and C2, CPC of Cj is not greater than the sum of CPC of C; and C;

5. Disjoint component additivity. If two unconnected component C| and C, are merged to be a new com-
ponent C3 = C; U C that replaces Cy and Cp, then CPC of C3 is equal to the sum of CPC of C; and
C

@ Springer

Software Qual J

GUI. Through GUI, it is convenient to collect traces by invoking specific features. In this
way, the need to have an accurate test case suite can be avoided. So we choose to design
test scenarios for each software system. This method of constructing inputs also has been
adopted by Bavota et al. (2013) for dynamic measurements.

Deployment and monitoring We deploy and run the distributed software on VMs. Dif-
ferent component locates in different VM. We use Kieker tool (version 1.12) (Hoorn et al.
2012) to collect execution data. Kieker provides dynamic analysis capabilities including
monitoring and analyzing a software system runtime behaviors. It can enable applica-
tion performance monitoring and architecture discovery. In particular, this tool provides
probes for monitoring a distributed system. Driven by above test scenarios as inputs, the
execution behaviors can be recorded once the application is running. Figure 2 illustrates
partial records when monitoring RSS Reader Recipes application, one of the target software
systems.

In Fig. 2, each line corresponds to one record. There are ten items for each record, and
items are separated by ““;”. From left to right, the items are Type, Time, Method, SessionlD,
TracelD, Tin, Tout, HostName, EOI, and ESS. Type item means the type of this record. In
the following experiments, we only focus on the “$1” about calling behaviors. Time item
means the timestamp when this execution behavior happens. Method item denotes the full
signature of an invocated method, including modifier, class name, method name, and param-
eter list. SessionID item is a globally unique number representing each session. TracelD is
a globally unique number representing each trace. Tin is the timestamp just before entering
this method. Tout is the timestamp just after finishing execution. HostName item is the node
in which the method is running. In the following experiments, one component is deployed
on the corresponding node, so HostName item can be used to differentiate different compo-
nents. EOI item is the calling order of the method. ESS is the depth of the calling stack of
the method. Based on SessionID, TracelD, EOI, and ESS items of all records generated by
Kieker, intra-component interactions can be obtained, and inter-component interactions can
be associated from one component to others. Finally, a set of representative dynamic data
can be collected.

Modeling Analyzing the set of collected data using Python script, we adopt two schemas
in Section 2 to generate models: Growing CN and Partitioned CN. These models are two
different views of abstract presentation of the distributed software.

CHC and CPC measurements According to the formulations in Section 3, we measure
CHC and CPC attributes by computing CC and CP metrics based on the above models. And
Networkx 1.11% Library is used.

4.2 Target software systems

4.2.1 RSS reader recipes application

RSS Reader Recipes? is a distributed enterprize application developed by Netflix. It provides
web service for users to get, add, and delete RSS feeds. The lines of code is about 20K

Zhttp://networkx.github.io
3https://github.com/Netflix/recipes-rss

@ Springer

http://networkx.github.io
https://github.com/Netflix/recipes-rss

Software Qual J

$1,1465356237529421201;static boolean
com.netflix.discovery.DiscoveryClient.access$1200 (com.netflix.discovery.DiscoveryClient) ;<no-sessi
on-id>;7852729637762237388;1465356237524721468;1465356237529421033; middletier;1;1

2 $1;1465356237529422349;public void
com.netflix.discovery.DiscoveryClient$CacheRefreshThread.run () ;<no-session-id>;7852729637762237388
;1465356237524715942;1465356237529422244;middletier;0;0
$1;1465356237533380974;public java.lang.String
com.netflix.appinfo.InstanceInfo.getAppName () ;<no-session-id>;7852729637762237389;1465356237533379
706;1465356237533380711;middletier;4;4

1 $1;1465356237533485057;public com.netflix.appinfo.InstanceInfo$InstanceStatus
com.netflix.appinfo.InstanceInfo.getStatus () ;<no-session-id>;7852729637762237389;14653562375334842
85;1465356237533484957;middletier;5;4
$1;1465356237533539542; public java.lang.Long
com.netflix.appinfo.InstanceInfo.getLastDirtyTimestamp () ;<no-session-id>;7852729637762237389;14653
56237533538565;1465356237533539450; middletier;6;4
$1;1465356237533674977;private org.apache.http.HttpEntity
com.sun.jersey.client.apached.ApacheHttpClient4Handler.getHttpEntity (com.sun.jersey.api.client.Cli
entRequest) ;<no-session-id>;7852729637762237389;1465356237533674020;1465356237533674862;middletier
:10;7

Fig. 2 Partial records when monitoring RSS Reader Recipes application by Kieker

statistically estimated by SCITools Understand.* It contains three components, including
Middletier, Edge, and Eureka. In our experiment, these components are deployed on three
different VMs hosted on Ubuntu15.10 server. The whole framework is shown in Fig. 3.

4.2.2 iBATIS JPetStore application

We use the distributed version of iBATIS JPetStore referring to Marwede et al. (2009). The
iBATIS JPetStore Demo is an online pet store. Like most e-stores, users can browse and
search the product catalog, choose items to add into a shopping cart, amend the shopping
cart, order the items in the shopping cart, and modify user account information. The lines
of code is about 2K. The application consists of four components including Account, Pre-
sentation, Catalog, and Order. In our experiment, these components are deployed on four
different VMs hosted on Ubuntul5.10 server, and access database located at the fifth VM.
The whole framework is shown in Fig. 4.

4.3 Measurement results
4.3.1 Measurement results for RSS reader recipes application

After this distributed application starts successfully, it always remains in running status.
Users can do different operations through its web GUI. Driven by representative test sce-
narios, 250,000 traces are generated when the system lasts running for five hours. Here, we
set Ncons: = 100 to generate growing CN, and CN grows from CN-100 to CN-250,000.
Figure 5 illustrates three Growing CNs including CN-100, CN-500, and CN-1000. Vertex is
rendered with different color, and it means that a method belongs to a different component.
Methods located on Edge, Middletier, and Eureka are separately rendered in blue, red, and
yellow color. Each edge (it is not Edge component) means a unique method-method inter-
action. An intra-component interaction is rendered in green while inter-component one in
black. The width of one edge is directly proportional to the weight of this edge. Here, the
weight is the method calling frequency. The larger the weight is, the wider the edge is. There
are two parameters in Metrics CC formulation, and we set « = 0.7, § = 0.3. Metrics CC
and CP are computed in each CN, and their changing charts of Growing CNs are shown in
Figs. 6 and 7.

“https://scitools.com/

@ Springer

https://scitools.com/

Software Qual J

Eureka Component

VM2

Client

Middletier Component

VMI Edge Component

VM3

Fig. 3 The framework of RSS Reader Recipes application

Account Component

J

VM2
Database
Presentation Component Catalog Component
VMI VM3
Order DB
Order C t
raer Component VM5

VM4

Fig. 4 The framework of distributed version of iBATIS JPetStore application

® Edge

—— Intra-component edge
— Inter-component edge

® Middletier
Eureka

— Edge
—— Middletier
——Eureka b

Scale

Fig. 6 CC value changing chart of Growing CN

@ Springer

25
x 100000

Software Qual J

25

20

5L A A M A

cp r_/w_m_/_/p/\g_{
°r r{,/_/\,_/\ A |

——Edge
5 & — Middletier ||
J ——Eureka
0 1 1 1 1
0 5 1 15 2 2.5
Scale x 100000

Fig. 7 CP value changing chart of Growing CN

In Figs. 6 and 7, it shows that CHC and CPC of each component tend to be in a steady
state with the scale increase of growing CNs over time. Although there is a little fluctuation,
the general trend is to be steady. The reason is that when a new software feature is invoked,
the dynamic structure of the system is changed. After the major features are all covered, the
dynamic structure tends to be stable. CHC and CPC tend to be stable after the number of
traces reaches 1.25 x 10°. We call this point as stable point. For each component, the mean
and standard deviation of CC and CP after this stable point in Growing CNs are statistically
computed with Wilcoxon signed-rank test for observation. CC results are shown in Table 3.
CP; ; and C P; results are shown in Table 4.

Tables 3 and 4 show CC and CP in Growing CNs present low standard deviation, which
indicates that the data points tend to be close to the mean. Using the mean value, we observe
CHC and CPC feature of all components in RSS Reader Recipes application. Figure 8 shows
the overall results. It is discovered that the CHC of Eureka component is relatively lower
than ones of Middletier and Edge component. Also, CPC between Middletier and Eureka is
higher than that of other component pairs. Taking into consideration both CHC and CPC,
Eureka is the most risky component who has lower structure quality (lower CHC and higher
CPC) among all components in RSS Reader Recipes application. It implies that the subse-
quent structure refactoring works should focus more on Eureka component to improve its
structure quality.

4.3.2 Measurement results for iBATIS JPetStore application

The iBATIS JPetStore Demo is an online pet store. Users can browse the product catalog,
operating the shopping cart, order the items, and modify account information. After JPet-
Store application starts successfully, it remains in running status. Uses can do operations on
it through web GUI. By implementing representative user scenarios, 7300 traces are gener-
ated when the system is in operation for 2 h. Because the scale of this application is smaller

Table 3 Statistical results of CC

cc Edge Middletier Eureka
Mean 0.6302 0.6980 0.3910
Standard deviation 0.0110 0.0257 0.0066
P value <0.02 <0.02 <0.02

@ Springer

Software Qual J

Table 4 Statistical results of CP

Ccp Mean Standard P value
deviation
Edge-Middletier 7.3778 0.6978 <0.02
Edge-Eureka 8.1473 0.3480 <0.02
Middletier-Eureka 12.6764 0.7849 <0.02
Middletier-Edge 6.1605 0.4738 <0.02
Eureka-Edge 2.3373 0.0445 <0.02
Eureka-Middletier 11.8875 0.1364 <0.02
Edge 15.2848 0.7148 <0.02
Middletier 18.6834 1.0442 <0.02
Eureka 14.2380 0.1467 <0.02
a os b 20
0.7
0.6 15 1
0.5
8 04 & 10]
0.3
0.2 5 |
0.1
. ; 0
Eureka Middletier ~Edge Eureka Middletier Edge
CC value for each component CP value for each component
Cc
14

Edge-Middletier Edge-Eureka Middletier-EurekaMiddletier-Edge Eureka-Edge Eureka-Middletier

CP value for six pairs of components

Fig. 8 CC and CP value of components in RSS Reader Recipes application

@ Springer

Software Qual J

—— Intra-component edge
—— Inter-component edge
® Account
® Order
® Presentation
® Catalog

Fig. 9 An illustration of Growing CNs including CN-300, CN-1500, and CN-6000

than that of RSS Reader Recipes, the number of dynamic traces is also smaller. Here, we
set Ncons: = 50 generating growing CN. Figure 9 illustrates three Growing CNs. Methods
located on Account, Order, Presentation, and Catalog component are separately rendered in
blue, red, green, and black color. Each edge means method-method interaction. An intra-
component interaction is rendered in blue while inter-component one in black. CC and CP
are computed for each CN. There are two parameters in metrics CC formulation, and we set
a = 0.7, B = 0.3. Their changing charts of the Growing CNs are shown in Fig. 10.

It can be observed that CHC and CPC of each component tend to be in a stable state with
the scale increase of growing CNs despite of a little fluctuation. The reason is that when a
new software feature is invoked, the dynamic structure of the system is changed. After the
major features are all covered, the dynamic structure tends to be stable. The stable point is
the point where the number of traces reaches 3500. So for each component, the mean and

a os ‘
07 _
0.6 [Account 7
| Order |
0.5 Presentation
L Catalog _
CC 04
03 | b
02 | I
0.1 |]
L ! L L I L
0 0 1000 2000 3000 4000 5000 6000 7000 8000
CC value of changing chart in Growing CN
b
14 L /V\ -
12 Order-Catalog B
10 Presentation-Account
B Presentation-Catalog B
cP 8 Presentation-Order -
6 F |
A
4 F |
5 |
I I I I I !
0 o0 1000 2000 3000 4000 5000 6000 7000 8000

CP value of changing chart in Growing CN

Fig. 10 The CC and CP changing chart of Growing CN

@ Springer

Software Qual J

Table 5 CC statistical results

cc Account Order Presentation ~ Catalog
Mean 0.3657 0.7144 0.2218 0.5918
Standard Deviation ~ 0.0067 0.0063 0.0050 0.0295
P value <0.02 <0.02 <0.02 <0.02

standard deviation of CC and CP after this point are statistically computed with Wilcoxon
signed-rank test for observation. CC; results are shown in Table 5 and CP; ; results in
Table 6.

Tables 5 and 6 show CC and CP in Growing CNs present low standard deviation, which
indicates that the data points tend to be close to the mean. Therefore, by using the mean
value, we try to observe the CHC and CPC feature of all components in this distributed
application. Figure 11 shows the overall results. It can been noticed that Presentation com-
ponent has relatively lower CHC than other components. Also, CPC between Presentation
and Account (or Catalog) is higher than that of other component pairs. By measuring both
CHC and CPC, it is indicated that Presentation is the most risky one who has lower structure
quality among all components in the distributed version of iBATIS JPetStore application. It
suggests the structure refactoring works should focus more on Presentation.

4.3.3 Comparison and discussion of measurement results

Coupling is closely related to the dependency between software entities, but the existing
coupling measurements are unable to capture the inter-component dependency, so we cannot
do comparison with the existing coupling metrics. For cohesion, it is just dependent on the
dependency inside one software entity, so we simply extend the existing class-level cohesion
metrics into component level by using the average of class cohesion inside one component.
Table 7 lists three existing cohesion metrics in detail for our comparison experiments. The
measurement results are shown in Table 8. For CC, ICH, and Coh, the larger the value is,
the more cohesive the software entity is. LCOMS is opposite, and it measures the lack of
cohesion. The value cells in italic highlight the components, which are identified as the
relatively lowest cohesiveness by using different measurements.

Table 8 shows that Eureka and Presentation are in lower cohesiveness when measured
by the proposed CHC and CPC, but other measurements are not. In RSS Reader Recipes,
component Eureka is responsible for locating service component and load balancing,’ so it
performs more interactions across components than other components. In iBATIS JPetStore,
component Presentation is responsible for directly processing users requests, then sends the
data to other components including Catalog, Account, and Order for further process. So it
performs more interactions across components than other components. Therefore, Eureka
and Presentation should be in lower cohesion. It can be seen that the proposed measure-
ments are consistent with function feature of components when compared with the existing
ones. So, our methods are able to better measure the structure feature of components for
distributed software. Through observing CHC and CPC attributes of all components, we
can try to point out the potential components deviating from the general level in the same
distributed software. Therefore, it can provide a view that helps developers focus on the
relatively low-quality components in one distributed system.

Shttps://github.com/Netflix/eureka/wiki/Eureka-at-a- glance

@ Springer

https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Software Qual J

Table 6 CP statistical results

CcP Order- Presentation- Presentation- Presentation-
Catalog Account Catalog Order

Mean 4.8400 14.0461 15.3392 5.5

Standard deviation 0.0574 0.2474 0.0365 0

P value <0.02 <0.02 <0.02 <0.02

Of course, this is just an initial experiment to apply our methods, and the number of
components is limited. In order to observe the normal level of CHC and CPC attributes
of components, we will do deeper analysis for more distributed software systems and help
identifying the potential needed refactoring components. On the other hand, different kinds
of software have different structure features and metric value distributions even for the same
metric. Therefore, it is not simple to define a uniform threshold to generally assess whether
a distributed system is good or bad-structure quality. This is also a common difficulty faced
by the existing quality measurement works for single-server software.

4.4 Other results

In addition, CHC and CPC attributes also are measured based on Partitioned CN, and the
characteristics are observed.

4.4.1 Measurement for RSS reader recipes application

The RSS Reader Recipes application provides users with three business functionalities,
including getting, adding, deleting feeds. We use JMeter® to separately send Get, Add, and
Delete requests concurrently in five times. So CN-Delete, CN-Add, CN-Get can be gener-
ated. Besides, CN-Start is generated during the period before the whole service is launched
successfully, and CN-Idle is generated by lasting one minute during which the application
does not have requests to process. Figure 12 illustrates the partitioned CNs. The color mean-
ing of a vertex or an edge is same with that in Growing CN shown in Fig. 5. We measure
CHC attribute by computing metric CC; for each component. And we also measure CPC
attribute by computing metric C P; ; for each pair of components. The results are listed in
Tables 9 and 10.

In Fig. 12, it can be seen that the Eureka component does not participate in business
functionality in most cases. So CC for Eureka in Table 9 is null (shown as “ /). They
also show that CN-Delete, CN-Add, and CN-Get present similar CHC and CPC attributes.
The reason is that these three CNs are generated from runtime traces representing similar
business logic of the software system. Also, it is shown that CP value related with Eureka
is relatively higher in CN-Start and CN-Idle than that in other CNs. This feature reflects
that when software system is in starting and idle state, Middletier and Edge need to inform
Eureka that they are alive at intervals.

4.4.2 Measurement for iBATIS JPetStore application

We design and implement four test functions, and four partitioned CNs can be obtained. CN-
Account corresponds to the function that users can check and modify personal information.

Shttp://jmeter.apache.org

@ Springer

http://jmeter.apache.org

Software Qual J

a os b s
0.7 1 14 1
0.6 12 1
0.5 10 1

CC 04 CP g 4
0.3 6 1
0.2 4 1
0.1 2 1

Account Order Presentation Catalog Order-Catalog Presentation-Account ~ Presentation-Catalog Presentation-Order

CC value for each component CP value for six pairs of components

Fig. 11 CC and CP value for components in iBATIS JPetStore application

CN-Browse corresponds to that users can browse catalog and product items. CN-Cart cor-
responds to operations about shopping cart. CN-Order corresponds to that users can modify
or submit the order. Figure 13 illustrates these partitioned CNs. The color of a vertex or an
edge is same with that in Growing CN shown in Fig. 9. For each partitioned CN, CHC and
CPC attributes are measured by computing CC; and C P; ; metrics. The results are listed in
Table 11.

In Fig. 13, it can be seen that different components dominate different Partitioned CNis.
For example, Catalog component plays a major role in CN-Browse, while Account com-
ponent plays a main role in CN-Account. Also, Table 11 shows that different partitioned
CNs present different CHC and CPC feature. The reason is that the four CNs corresponds
to different business logics.

5 Discussion
5.1 The limitation of dynamic measurement

The existing measurement methods include static and dynamic methods. Static metrics mea-
sure software systems based on information extracted from design document or source code.

Table 7 Cohesion metrics for comparison

Metric Reference Original form Introduction

ICH (Lee and Liang 1995) ICH(m) =", /ey (1 + |par(m’))- NPI(m, m') is the calling

NPI(m,m'), times, | par(m')| is the number
ICH(0) =3 em o ICH (m), of parameters of the calling
ICH(SS) =) ,css ICH(c) method

Coh (Briand et al. 1998) Coh = % [is the number of class variable

member, k is the number of class
method member, a is the sum of
the number of variable member
referenced by one method mem-
ber in this class

LCOMS5 (Sellers 1995) Lcoms = &= a, k, I are same with those in Coh

@ Springer

Software Qual J

Table 8 Meaurement results in comparison experiments

Metrics CC ICH ICH-Avg Coh-Avg LCOMS-Avg

RSS reader recipes

Edge 0.6302 45 1.9565 0.1670 1.0490
Middletier 0.6980 104 1.8909 0.2110 1.1090
Eureka 0.3910 4939 3.0582 0.1540 0.9440

iBATIS JPetStore

Order 0.7144 24 1.0435 0.0725 0.7350
Catalog 0.5918 6 0.25 0.2920 0.6820
Presentation 0.2218 66 1.1786 0.0885 0.8450
Account 0.3657 5 0.2174 0.1900 1.1546

The value cells in italic highlight the components, which are identified as the relatively lowest cohesiveness
by using different measurements

Dynamic metrics measure software quality using the information from executing traces.
Compared with static ones, dynamic methods have expensive cost of dynamic analysis and
complexity to perform (Arisholm et al. 2002; Geetika and Singh 2014). On the one hand, the
software system need to be instrumented in a manual way or in an automatically monitoring
way. Since it is impossible to instrument all the methods in a large-scale distributed systems,
the instrumented scope need be carefully chosen to make sure that the major method call-
ing behaviors can be obtained. In our case studies, the line of code of RSS Reader Recipes
application is about 20K, so the methods of this application are partially instrumented by
covering the major functions. iBATIS JPetStore application is about 2K, so we cover all the
methods. On the other hand, test cases or test scenarios must be designed to drive the target
software systems to generate the representative data. In our case studies, the two distributed
systems expose their function features through GUL It is convenient to design test scenar-
ios. In general, when measuring other various distributed systems, the instrumented scope
and test cases (or test scenarios) need to be selected according to the specific features of
target applications.

5.2 The limitation of collecting dynamic data

Due to the distributed nature of distributed software, the inter-component interactions or
dependencies cannot be captured by source code analysis. In this paper, we use a mon-
itoring tool-Kieker to obtain the dynamic execution traces of an instrumented distributed
software system. The intra-component and inter-component interactions can be extracted
accordingly. This tool provides probes for collecting distributed traces in REST-based

Fig. 12 An illustration of Partitioned CNs including CN-Start, CN-Add, CN-Get, CN-Delete, and CN-Idle

@ Springer

Software Qual J

Table 9 CC results of

partitioned CN Partitioned CN Middletier Edge Eureka
CN-Start 0.6847 0.6211 /
CN-Delete 0.5324 0.3517 /
CN-Add 0.5523 0.3252 /
CN-Get 0.5916 0.3530 /
CN-Idle 0.6726 0.6738 /

environments with Jersey. So we just collect data on the distributed systems which employ
Jersey communication framework. In real world applications, there are all kinds of commu-
nication paradigms including inter-process communication, remote invocation, and indirect
communication (Coulouris et al. 2012). Each paradigm can be implemented by employing
different communication techniques. Different communication techniques use different data
type and communication protocol. In consequence, the tool used for collecting data in this
paper maybe is limited for monitoring various distributed systems. Except this constraint,
our model and measurement methods are general and can be extended to other distributed
systems.

6 Related works
6.1 Cohesion measurement for single-server software

The cohesion measures mainly include static and dynamic (or runtime) cohesion metrics.
Static cohesion is measured based on information extracted from design document or source
code. Dynamic cohesion is measured based on runtime information extracted from execu-
tion traces of software. A group of test cases or user scenarios are designed in order to drive
the software to generate execution traces for dynamic measurement.

For static cohesion measurement, Chidamber and Kemerer (1994) proposed the lack of
cohesion in methods metric (LCOM). Briand et al. (1999) and Counsell et al. (2006) pro-
posed cohesion metrics based on information available in high-level design phase. Dallal
and Briand (2012) proposed a class cohesion metric (LSCC) based on the degree of inter-
action between each pair of methods from source code. It also verified LSCC usefulness
in improving class cohesion. Qu et al. (2015a) proposed cohesion metric MCC and MCEC
abstracted from software source code. MCC and MCEC are measured based on community
structure of software system.

Table 10 CP results of Partitioned CN

Partitioned Middletier- Edge- Eureka- Middletier- Eureka- Edge-
CN Edge Middletier Middletier Eureka Edge Eureka
CN-Start / / / 5.0363 1.5 4.3461
CN-Delete 2.0833 4 / / / /
CN-Add 2.0833 4 / / / /
CN-Get 2.0833 35 / / / /
CN-Idle / / / 34 1.5 2.9600

@ Springer

Software Qual J

.:.... .:.‘Q.O...o.o.r\/ * :.....'t.". ..‘.U’.....'
.'.'.:N—.'...o.o.." .0.:.0.'.' .'.-).o.

Fig. 13 An illustration of Partitioned CNs including CN-Account, CN-Browse, CN-Cart, and CN-Order

Yacoub et al. (1999), Tahir and Macdonell (2012), and Arisholm et al. (2002) distin-
guished static and dynamic metrics. For dynamic cohesion, Mitchell and Power (2004) pro-
posed two run-time cohesion metrics RLCOM and RWLCOM. Both are direct extensions
of LCOM. RLCOM measures the count of instance variables which are actually accessed at
run-time, while RWLCOM measures cohesion by weighting each instance variable by the
number of times it is accessed at run-time. Gupta and Chhabra (2011) proposed dynamic
cohesion metrics at object level and experiments suggested the proposed ones can better
capture the dynamic information. Mathur et al. (2011) defined cohesion RuCIVA simi-
lar to RLCOM (Mitchell and Power 2004). Desouky and Etzkorn (2014) proposed metric
RLCOM-DESOUKY, an extension to RuCIVA (Mathur et al. 2011). It presented an empiri-
cal comparison with the existing runtime cohesion metrics suggested by Mitchell and Power
(2004) and Mathur et al. (2011) in one case.

These existing structure measurement using static and dynamic metrics are almost only
validated on single-server software at class level or object level. They could not observe and
assess unique characteristics of distributed software at component level, which is our focus
point.

6.2 Coupling measurement for single-server software

Different type of information relevant to software can capture and reflect different view of
software attributes (Bavota et al. 2013). Similar to cohesion metrics, the existing coupling
metrics also mainly include static and dynamic (or runtime) ones.

For static coupling, the most influential ones are coupling between object classes (CBO)
and response for a class (RFC), proposed by Chidamber (1991) and Chidamber and Kemerer
(1994). CBO is defined as the count of classes that a class referenced plus the count of
classes that referenced the class. RFC is the size of the Response set of a class. The Response

Table 11 Measurement results of Partitioned CN

Partitioned CN CC CP

Account Order Presentation Catalog Presentation- Presentation- Presentation-

Account Order Catalog
CN-Account 0.3919 / / 0.6 10.5 null 2
CN-Browse / / / 0.6421 / / 3
CN-Cart / / 0.5043 0.6263 1 1.5 9.8333
CN-Order 0.4316 0.6586 0.1461 / 7.5 3.5 2.8333

@ Springer

Software Qual J

set for a class is a set of methods that can potentially be executed in response to a message
received by an object of that class. Fan In, Fan Out, Efferent Coupling (Ce) and Afferent
Coupling (Ca) are similar metrics to the typical CBO (Elish 2010). Briand et al. (1999)
designed a unified framework for static coupling measurement. Allen et al. (2001) defined
coupling metrics by applying entropy and information measurement in information theory.

For dynamic coupling, Yacoub et al. (1999) defined two dynamic object-level coupling
metrics export object coupling (EOC) and import object coupling (IOC), which were com-
puted based on the count of exchanged messages during execution scenarios. Mitchell and
Power (2004) extended CBO and validated the proposed dynamic coupling using SPEC
JVMO8 benchmark. Arisholm et al. (2002) conducted empirical evaluation of the proposed
dynamic coupling measures and showed they complement existing static coupling metrics.
Most of proposed dynamic coupling metrics have not yet been empirically validated due
to the expensive cost of dynamic analysis and complexity to perform (Geetika and Singh
2014; Arisholm et al. 2002).

In addition to static and dynamic coupling above, there are also works measuring cou-
pling based on other information relative to other software artifacts. Some works compute
the coupling based on the semantic information obtained from the source code, encoded
in identifiers and comments, such as Poshyvanyk and Marcus (2006), Poshyvanyk et al.
(2009), and Gethers and Poshyvanyk (2010). Other works (Ying et al. 2004) measure the
coupling of relation of software elements by analyzing the commit log history.

All these coupling metrics are almost only validated on single-server software at class
level or object level, while our works investigate CHC and CPC attributes specific for
distributed software.

6.3 Cohesion and coupling for SOA

Recently, there are some relevant works focusing on service-oriented architecture (SOA),
which is one special type of distributed architecture from service view. These works research
about cohesion and coupling of service for SOA software, and also can be categorized into
static and dynamic ones.

For static metrics, Perepletchikov and Ryan (2011) investigated the impact of static cou-
pling (Perepletchikov et al. 2007), and the results indicated a statistically significant causal
relationship between the coupling metrics and the maintainability of software in service
level for SOA software. Athanasopoulos et al. (2014) proposed a suite of cohesion met-
rics which only used interface specification. The proposed cohesion metrics were used to
decompose a given interface into more cohesive interface to improve the service interface
design quality. It can be seen these static metrics are based on design document, particularly
web service design language (WSDL)-based document. Their work can be done in early
design stage of SOA software development, and aims at improving service interface design
quality, which are different with our works.

For dynamic metrics, Nayrolles et al. (2013) measured cohesion and coupling based
on mining execution traces. For SOA software, they hypothesized that “If the number of
different methods of a service A is equal or superior to the number of different services
invoking A, the service is not externally cohesive; If a service appears in the consequent
(antecedent) parts for a high number of associations, then it has high incoming (outgoing)
coupling.” These dynamic ones are based on causal relation of services by mining execution
traces, while our work use the method calling behaviors instead of using service relation by
data mining.

@ Springer

Software Qual J

7 Conclusion and future work

In this paper, we aim at measuring structure quality specific for distributed software. To
model distributed software, we have extended the existing CN model, generating Growing
CN and Partitioned CN by using different schemas. Two structure quality attributes CHC
and CPC are defined for distributed software. Then in order to quantitatively measure CHC
and CPC attributes, two dynamic metrics CC and CP are formulized based on our models.
These metrics have been proven to meet the mathematical properties. Finally, two case stud-
ies are conducted on real-world open-source distributed software systems. The studies show
that dynamic metrics CC and CP can present structure attributes for distributed software.
The measuring results are consistent with the expected features of distributed software. It
also has been observed that CHC and CPC attributes of Growing CNs tend to be stable
with a scale increase of Growing CNs over time. In addition, it has been discovered that the
partitioned CNs with similar business functionality present similar CHC and CPC features.

Our work is just the first step toward future structure optimization for distributed soft-
ware, and it aims at providing a quantitative and objective approach for guiding and
assessing the subsequent structure refactoring or optimizing process. Of course, there is
still a lot of practical work to do in the future. On the one hand, there are fewer publicly
available distributed systems than single-server software systems for research purposes. We
will try to collect more open source systems for supporting studies on distributed software.
On the other hand, we will conduct comprehensive experiments and try to apply the pro-
posed methods to structure re-factoring work for distributed software. In particular, since
CHC and CPC attributes are relevant to the function role of a component, we will inves-
tigate how to guide the good-quality transformation from legacy single-server software to
distributed software by considering the role of components. Also, structure quality is just
one view of measuring good-quality distributed systems, and performance is a more objec-
tive perspective. Therefore, in the future structure optimization work, both structure quality
and performance can be considered during the process.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(91218301, U1301254, 91418205, 61472318, 61428206, 61532015, 61602369), Fok Ying-Tong Education
Foundation (151067), Key Project of the National Research Program of China (2013BAK09B01), Ministry
of Education Innovation Research Team (IRT13035), and the Fundamental Research Funds for the Central
Universities.

References

Al Dallal, J. (2010). Mathematical validation of object-oriented class cohesion metrics. International Journal
of Computers, 4(2), 45-52.

Allen, E.B., Khoshgoftaar, T.M., & Chen, Y. (2001). Measuring coupling and cohesion of software modules:
an information-theory approach. In International symposium on software metrics (p. 124).

Arisholm, E., Briand, L.C., & Foyen, A. (2002). Dynamic coupling measurement for object-oriented
software. IEEE Transactions on Software Engineering, 30(8), 33-42.

Athanasopoulos, D., Zarras, A., Miskos, G., Issarny, V., & Vassiliadis, P. (2014). Cohesion-driven decom-
position of service interfaces without access to source code. IEEE Transactions on Services Computing,
84), 1-1.

Bavota, G., Dit, B., Oliveto, R., Penta, M.D., Poshyvanyk, D., & Lucia, A.D. (2013). An empirical study on
the developers’ perception of software coupling. In International conference on software engineering
(pp- 692-701).

Bieman, J.M., & Ott, LM. (1994). Measuring functional cohesion. IEEE Transactions on Software
Engineering, 20(8), 644—657.

@ Springer

Software Qual J

Briand, L.C., Daly, J.W., & Wiist, J. (1998). A unified framework for cohesion measurement in object-
oriented systems. Empirical Software Engineering, 3(1), 43-53.

Briand, L.C., Morasca, S., & Basili, V.R. (1999). Defining and validating measures for object-based high-
level design. IEEE Transactions on Software Engineering, 25(5), 722-743.

Cai, H., & Thain, D. (2016). Distia: a cost-effective dynamic impact analysis for distributed programs. In
IEEE/ACM international conference on automated software engineering (pp. 344-355).

Chidamber, S.R. (1991). Towards a metrics suite for object oriented design. In Proceedings of the conference
on OOPSLA’91, Sigplan Notices.

Chidamber, S.R., & Kemerer, C.F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6), 476—493.

Coulouris, G., Dollimore, G., Kindberg, J., & Blair, T. (2012). Distributed systems: concepts and design (5th
edition).

Counsell, S., Swift, S., & Crampton, J. (2006). The interpretation and utility of three cohesion met-
rics for object-oriented design. ACM Transactions on Software Engineering and Methodology, 15(2),
123-149.

Dallal, J.A., & Briand, L.C. (2012). A precise method-method interaction-based cohesion metric for object-
oriented classes. ACM Transactions on Software Engineering and Methodology, 21(2), 1-34.

Desouky, A.F., & Etzkorn, L.H. (2014). Object oriented cohesion metrics: a qualitative empirical analysis of
runtime behavior. In ACM southeast regional conference (pp. 1-6).

Elish, M.O. (2010). Exploring the relationships between design metrics and package understandability: a
case study. In The 18th IEEE international conference on program comprehension, ICPC 2010, Braga,
Minho, Portugal, June 30—July 2, 2010 (pp. 144-147).

Geetika, R., & Singh, P. (2014). Empirical investigation into static and dynamic coupling metrics. ACM
SIGSOFT Software Engineering Notes, 39(1), 1-8.

Gethers, M., & Poshyvanyk, D. (2010). Using relational topic models to capture coupling among classes
in object-oriented software systems. In 26th IEEE international conference on software maintenance
(ICSM2010) (pp. 1-10).

Gupta, V., & Chhabra, J.K. (2011). Dynamic cohesion measures for object-oriented software. Journal of
Systems Architecture - Embedded Systems Design, 57(4), 452-462.

Hoorn, A.V., Waller, J., & Hasselbring, W. (2012). Kieker: a framework for application performance mon-
itoring and dynamic software analysis. In Proceedings of the 3rd ACM/SPEC international conference
on performance engineering (pp. 247-248).

Indrajit Wijegunaratnec, M., & Fernandez, G. (1998). Distributed applications engineering. London:
Springer.

Jin, W., Liu, T., Qu, Y., Chi, J., Cui, D., & Zheng, Q. (2016). Dynamic cohesion measurement for dis-
tributed system. In The international workshop on specification, comprehension, testing, and debugging
of concurrent programs (pp. 20-26).

Lee, Y.S., & Liang, B.S. (1995). Measuring the coupling and cohesion of an object-oriented program based
on information flow. In Proceedings of international conference on software quality.

Lin, Y., Peng, X., Cai, Y., Dig, D., Zheng, D., & Zhao, W. (2016). Interactive and guided architectural refac-
toring with search-based recommendation. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering (FSE).

Marwede, N., Rohr, M., Hoorn, A., & Hasselbring, W. (2009). Automatic failure diagnosis support in
distributed large-scale software systems based on timing behavior anomaly correlation. In European
conference on software maintenance and reengineering (pp. 47-58).

Mathur, R., Keen, K.J., & Etzkorn, L.H. (2011). Towards a measure of object oriented runtime cohesion
based on number of instance variable accesses. In Southeast regional conference 2011, Kennesaw, GA,
USA (pp. 255-257).

Mitchell, A., & Power, J.E. (2004). An empirical investigation into the dimensions of run-time coupling
in Java programs. In Proceedings of the 3rd international symposium on principles and practice of
programming in Java (pp. 9-14). Trinity College Dublin.

Nayrolles, M., Moha, N., & Valtchev, P. (2013). Improving soa antipatterns detection in service based sys-
tems by mining execution traces. In Working conference on reverse engineering (WCRE) (pp. 321-
330).

Nguyen, H., Shen, Z., Tan, Y., & Gu, X. (2013). Fchain: toward black-box online fault localization for
cloud systems. In 2013 IEEE 33rd international conference on distributed computing systems (ICDCS)
(Vol. 7973, pp. 21-30).

@ Springer

Software Qual J

Perepletchikov, M., & Ryan, C. (2011). A controlled experiment for evaluating the impact of coupling on
the maintainability of service-oriented software. IEEE Transactions on Software Engineering, 37(4),
449-465.

Perepletchikov, M., Ryan, C., Frampton, K., & Tari, Z. (2007). Coupling metrics for predicting maintainabil-
ity in service-oriented designs. In Australian software engineering conference (pp. 329-340).

Poshyvanyk, D., & Marcus, A. (2006). The conceptual coupling metrics for object-oriented systems. In /EEE
international conference on software maintenance (pp. 469-478).

Poshyvanyk, D., Marcus, A., Ferenc, R., & Gyiméthy, T. (2009). Using information retrieval based coupling
measures for impact analysis. Empirical Software Engineering, 14(1), 5-32.

Qu, Y, Guan, X., Zheng, Q., Liu, T., Wang, L., Hou, Y., & Yang, Z. (2015a). Exploring community struc-
ture of software call graph and its applications in class cohesion measurement. Journal of Systems and
Software, 108, 193-210.

Qu, Y., Guan, X., Zheng, Q., Liu, T., Zhou, J., & Li, J. (2015b). Calling network: a new method for modeling
software runtime behaviors. ACM SIGSOFT Software Engineering Notes, 40(1), 1-8.

Sellers, B.H. (1995). Object-oriented metrics measures of complexity. Prentice-Hall Inc.

Stevens, W.P., Myers, G.J., & Constantive, L.L. (1974). Structured design. Ibm Systems Journal, 13(2), 115—
139.

Tahir, A., & Macdonell, S.G. (2012). A systematic mapping study on dynamic metrics and software quality.
In 28th IEEE international conference on software maintenance, 2012 Vol. 9, no. 3, pp. 326-335.

Tanenbaum, A.S., & Steen, M.V. (2002). Distributed systems: principles and paradigms (pp. 279-283).
Tsinghua University Press.

Thones, J. (2015). Microservices. IEEE Software, 1, 116-116.

Tian, Z., Liu, T., Zheng, Q., Zhuang, E., Fan, M., & Yang, Z. (2017). Reviving sequential program birth-
marking for multithreaded software plagiarism detection. IEEE Transactions on Software Engineering.
http://ieeexplore.ieee.org/abstract/document/7888597/.

Wang, H., Liu, T., Guan, X., Shen, C., Zheng, Q., & Yang, Z. (2017). Dependence guided symbolic execution.
IEEE Transactions on Software Engineering, 43(3), 252-271.

Yacoub, S.M., Ammar, H.H., & Robinson, T. (1999). Dynamic metrics for object oriented designs. In
Proceedings of the 6th international software metrics symposium, 1999 (pp. 50-50).

Ying, A.T.T., Murphy, G.C., Ng, R., & Chu-Carroll, M.C. (2004). Predicting source code changes by mining
change history. IEEE Transactions on Software Engineering, 30(9), 574-586.

Zhou, Y., Lu, J., & Xu, H.L.B. (2004). A comparative study of graph theory-based class cohesion measures.
ACM SIGSOFT Software Engineering Notes, 29(2), 13—13.

Wauxia Jin is a Ph.D. candidate studying in Xi’an Jiaotong University, Xi’an, China. Her major is Computer
Science and technology. Her research interests include trustworthy software and software analysis especially
for distributed software system.

@ Springer

http://ieeexplore.ieee.org/abstract/document/7888597/

Software Qual J

Ting Liu received his B.S. degree in information engineering and Ph.D. degree in system engineering from
School of Electronic and Information, Xi’an Jiaotong University, Xi’an, China, in 2003 and 2010, respec-
tively. Currently, he is an associate professor of the Systems Engineering Institute, Xi’an Jiaotong University.
His research interests include Smart Grid, network security and trustworthy software.

Yu Qu received the B.S. and Ph.D. degrees from Xi’an Jiaotong University, Xi’an, China in 2006 and 2015
respectively. He is a post-doctoral researcher at the Department of Computer Science and Technology, Xi’an
Jiaotong University. His research interests include trustworthy software and applying complex network and
data mining theories to analyzing software systems.

@ Springer

Software Qual J

Qinghua Zheng received the B.S. degree in computer software in 1990, the M.S. degree in computer orga-
nization and architecture in 1993, and the Ph.D. degree in system engineering in 1997 from Xi’an Jiaotong
University, China. He was a postdoctoral researcher at Harvard University in 2002. He is currently a profes-
sor in Xi’an Jiaotong University, and the dean of the Department of Computer Science. His research areas
include computer network security, intelligent e-learning theory and algorithm, multimedia e-learning, and
trustworthy software.

Di Cui is a Ph.D. candidate studying in Xi’an Jiaotong University, Xi’an, China. His major is Computer Sci-
ence and technology. Her research interests include trustworthy software, architecture recovery of software
system.

Jianlei Chi is currently a Ph.D. student in Software Engineering at Xi’an Jiaotong University. His research
is focused on software analyzing, especially on test case evolving and prioritization.

@ Springer

https://www.researchgate.net/publication/317773925

	Dynamic structure measurement for distributed software
	Abstract
	Introduction
	Extended calling network*1pt
	Distributed software structure measurement
	Cohesion factor of component
	CouPling factor of component
	Rigorous decrease of 1n2
	The convergence of series 1n2

	Case studies
	Setting
	Construction of inputs
	Deployment and monitoring
	Modeling
	CHC and CPC measurements

	Target software systems
	RSS reader recipes application
	iBATIS JPetStore application

	Measurement results
	Measurement results for RSS reader recipes application
	Measurement results for iBATIS JPetStore application
	Comparison and discussion of measurement results

	Other results
	Measurement for RSS reader recipes application
	Measurement for iBATIS JPetStore application

	Discussion
	The limitation of dynamic measurement
	The limitation of collecting dynamic data

	Related works
	Cohesion measurement for single-server software
	Coupling measurement for single-server software
	Cohesion and coupling for SOA

	Conclusion and future work
	Acknowledgements
	References

